Stability of Periodic Waves of 1D Cubic Nonlinear Schrödinger Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Periodic Traveling Waves for Nonlinear Dispersive Equations

We study the stability and instability of periodic traveling waves for Korteweg-de Vries type equations with fractional dispersion and related, nonlinear dispersive equations. We show that a local constrained minimizer for a suitable variational problem is nonlinearly stable to period preserving perturbations. We then discuss when the associated linearized equation admits solutions exponentiall...

متن کامل

Periodic waves of a discrete higher order nonlinear Schrödinger equation ∗

The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...

متن کامل

Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations

This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...

متن کامل

Stability and Evolution of Solitary Waves in Perturbed Generalized Nonlinear Schrödinger Equations

In this paper, we study the stability and evolution of solitary waves in perturbed generalized nonlinear Schrödinger (NLS) equations. Our method is based on the completeness of the bounded eigenstates of the associated linear operator in L2 space and a standard multiple-scale perturbation technique. Unlike the adiabatic perturbation method, our method details all instability mechanisms caused b...

متن کامل

No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations.

Saddle-node bifurcations arise frequently in solitary waves of diverse physical systems. Previously it was believed that solitary waves always undergo stability switching at saddle-node bifurcations, just as in finite-dimensional dynamical systems. Here we show that this is not true. For a large class of generalized nonlinear Schrödinger equations with real or complex potentials, we prove that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Research eXpress

سال: 2017

ISSN: 1687-1200,1687-1197

DOI: 10.1093/amrx/abx004